Kamis, 28 Oktober 2010

biologi

Alam semesta terdiri dari komponen biotik dan abiotik. Komponen biotik (makhluk hidup)jumlahnya sangat banyak dan sangat beraneka ragam. Mulai dari laut, dataran rendah, sampai di pegunungan, terdapat makhluk hidup yang jumlahnya banyak dan sangat beraneka ragam. Karena jumlahnya banyak dan beraneka ragam, maka kita akan mengalami kesulitan dalam mengenali dan mempelajari makhluk hidup. Untuk mempermudah dalam mengenali dan mempelajari makhluk hidup maka kita perlu cara. Cara untuk mempermudah kita dalam mengenali dan mempelajari makhluk hidup disebut Sistem Klasifikasi (penggolongan / pengelompokan).



Ilmu yang mempelajari tentang klasifikasi (pengelompokan / penggolongan) disebut TAKSONOMI.

Klasifikasi dapat dilakukan oleh siapapun, tergantung Dasar Klasifikasi yang digunakan. Contoh dasar klasifikasi dalam biologi :

a. Berdasarkan kemampuan membuat makanan, makhluk hidup digolongkan menjadi :
1. Organisme Autotrof, organisme yang mampu membuat makanan sendiri melalui proses fotosintesis, contoh : tumbuhan
2. Organisme Heterotrof, organisme yang tidak mampu membuat makanan sendiri, contoh : hewan dan manusia

b. Berdasarkan habitatnya tumbuhan dikelompokkan menjadi :
1. Tumbuhan Hidrofit, tumbuhan yang hidup di air, contoh : teratai
2. Tumbuhan Higrofit, tumbuhan yang hidup di tanah lembap, contoh : lumut
3. Tumbuhan Xerofit, tumbuhan yang hidup di tanah kering, contoh : kaktus

c. Berdasarkan makanannya, hewan digolongkan menjadi :
1. Hewan Herbivora, hewan yang memakan tumbuhan, contoh : sapi
2. Hewan Carnivora, hewan yang memakan daging, contoh : harimau
3. Hewan Omnivora, hewan yang memakan tumbuhan dan daging, contoh : tikus

Klasifikasi makhluk hidup dilakukan oleh :
1. Aristoteles, mengklasifikasikan makhluk hidup menjadi 2 yaitu tumbuhan dan hewan
2. Carolus Linnaeus, mengklasifikasikan makhluk hidup menjadi 2 yaitu Plantae (tumbuhan) dan Animalia (hewan). Perbedaannya dengan Aristoteles adalah, Carolus Linnaeus adalah orang yang pertama kali meletakkan dasar klasifikasi dan membuat sistem penamaan yang disebut Binomial Nomenklatur, sehingga Carolus Linnaeus disebut sebagai Bapak Taksonomi
Tingkatan dalam klasifikasi disebut takson. Takson dari tingkat tertinggi ke terendah adalah :

KINGDOM
DIVISIO / PHYLLUM
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

- Dari spesies menuju kingdom, takson semakin tinggi
- Semakin tinggi takson, jumlah organisme (makhluk hidup) semakin banyak
- Semakin tinggi takson, persamaan antar makhluk hidup semakin sedikit
- Semakin tinggi takson, perbedaan antar makhluk hidup semakin banyak

- Dari kingdom menuju spesies, takson semakin rendah
- Semakin rendah takson, jumlah organisme (makhluk hidup) semakin sedikit
- Semakin rendah takson, persamaan antar makhluk hidup semakin banyak
- Semakin rendah takson, persamaan antar makhluk hidup semakin sedikit

3. Robert H. Whittaker, mengklasifikasikan makhluk hidup menjadi 5 kingdom, yaitu

1. Kingdom Monera
2. Kingdom Protista
3. Kingdom Fungi
4. Kingdom Plantae
5. Kingdom Animalia

Tingkatan takson untuk Kingdom Monera adalah
KINGDOM
DIVISIO
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

Tingkatan takson untuk Kingdom Protista adalah
KINGDOM
PHYLLUM
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

Tingkatan takson untuk Kingdom Fungi adalah
KINGDOM
DIVISIO
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

Tingkatan takson untuk Kingdom Plantae adalah
KINGDOM
DIVISIO
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

Tingkatan takson untuk Kingdom Animalia adalah
KINGDOM
PHYLLUM
CLASSIS
ORDO
FAMILIA
GENUS
SPESIES

Ciri-ciri pada sistem 5 kingdom :
1. Kingdom Monera : Prokariot, Autotrof dan Heterotrof, Uniseluler dan Multiseluler
2. Kingdom Protista : Eukariot, Autotrof dan Heterotrof, Uniseluler dan Multiseluler
3. Kingdom Fungi : Eukariot, Heterotrof, Uniseluler dan Multiseluler
4. Kingdom Plantae : Eukariot, Autotrof, Multiseluler
5. Kingdom Animalia : Eukariot, Heterotrof, Multiseluler

Untuk memahami secara lebih detail tentang perbedaan sel prokariotik dan sel eukariotik silakan klik : http://biology.about.com/library/weekly/aa031600a.htm

Tata Nama Ilmiah :
1. Menggunakan bahasa ilmiah (Latin)
2. Terdiri dari 2 kata, kata pertama menunjukkan genus, kata kedua menunjukkan spesies
3. Huruf depan kata pertama menggunakan huruf kapital, huruf depan kata kedua menggunakan huruf bukan kapital
4. Penulisan secara manual harus diberi garis bawah, penulisan dengan komputer harus diberi garis bawah atau cetak miring atau cetak tebal

Contoh organisme
1. Kingdom Monera :
- Diplococcus pneumoniae, penyebab penyakit radang paru-paru
- Salmonella typhosa, penyebab penyakit typus
- Eschericia coli, bakteri pembusuk dalam usus besar
- Oscilatoria sp
2. Kingdom Protista :
- Spirogyra sp
- Fucus sp
- Diatomae sp
- Gracilaria sp
- Amoeba sp
- Euglena viridis
- Plasmodium malariae
- Paramecium sp
3. Kingdom Fungi :
- Rhizopus sp
- Penicilium sp
- Auricularia polytricha
- Volvariella volvacea
4. Kingdom Plantae :
- Marchantia polymorpha
- Adiantum cuneatum
- Gnetum gnemon
- Oryza sativa
- Arachis hypogea
5. Kingdom Animalia :
- Planaria sp
- Ascaris lumbricoides
- Holothuria scabra
- Bufo americanus
- Chelonia mydas
- Macrofus rufus
- Felis tigris
Contoh anggota kingdom animalia yang lain dapat dilihat di :
http://images.ask.com/pictures?q=Amphibian+Species&qsrc=6&o=12506&l=dir&ni=
http://biology.about.com/od/zoology/Zoology.htm

Untuk memahami perbedaan Kingdom Plantae dan Kingdom Animalia silakan klik : http://biology.about.com/library/weekly/aa031600b.htm

Sistem Klasifikasi untuk Kingdom Plantae
Kingdom Plantae terdiri dari :
1. ........................................................ (belum dilanjutkan)
Diposkan oleh The Wonderfull of God's Creation di 20:12 1 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif
Kamis, 2007 September 13
Komponen abiotik dan komponen biotik berbeda, karena komponen biotik memiliki ciri-ciri yang membedakan dari komponen abiotik. Ciri-Ciri Makhluk Hidup tersebut adalah :
1. Respirasi
2. Memerlukan Nutrisi
3. Bergerak
4. Tumbuh dan Berkembang
5. Reproduksi
6. Iritabilita
7. Ekskresi
8. Adaptasi

Semua makhluk hidup memliki ciri-ciri tersebut, tetapi berbeda pada cara dan organ-organ yang digunakan.

1. RESPIRASI
adalah proses pengambilan oksigen dari luar tubuh untuk proses oksidasi bahan makanan di dalam tubuh.
Proses Oksidasi Biologi :
Makanan + O2 --> CO2 + H2O + Energi
Oksidasi Biologi --> Energi --> Aktivitas Tubuh

Makhluk hidup mengambil O2 dari lingkungan sekitarnya.
- Makhluk hidup darat mengambil O2 dari udara
- Makhluk hidup air mengambil O2 dari air

Karena O2 yang diambil berasal dari lingkungan yang berbeda maka, organ-organ respirasinya juga berbeda, misalnya :
1. Paru-paru, untuk mamalia, reptil, amphibi
2. Insang, untuk amphibi dan pisces

Organ respirasi pada tumbuhan :
1. Stomata (terletak di daun)
2. Lentisel (terletak di batang)

Ada 2 macam respirasi :
1. Respirasi Aerob
merupakan respirasi yang memerlukan oksigen
Contoh : respirasi pada manusia dengan menghirup udara
2. Respirasi Anaerob
merupakan respirasi yang tidak memerlukan oksigen
Contoh : respirasi pada ragi dalam proses fermentasi yang menghasilkan alkohol dan energi

2. MEMERLUKAN NUTRISI
Makanan diperlukan makhluk hidup untuk :
a. menghasilkan energi untuk beraktivitas
b. mengganti sel-sel yang rusak
c. proses pertumbuhan
d. metabolisme dalam tubuh

Ada 2 macam organisme, berdasarkan kemampuannya memperoleh makanan :
1. Organisme Autotrof
merupakan organisme yang dapat membuat makanan sendiri dari zat anorganik menjadi zat organik melalui proses fotosintesis.
Contoh : Tumbuhan
2. Organisme Heterotrof
merupakan organisme yang tidak dapat membuat makanan sendiri, tetapi memperoleh makanan dari organisme autotrof.
Contoh : Manusia, Hewan

Proses Fotosintesis :
H2O + CO2 --> O2 + Makanan
proses fotosintesis terjadi di daun dengan bantuan cahaya matahari

Cara memperoleh makanan pada organisme heterotrof adalah :
- digesti (mencerna), pada manusia, hewan tingkat tinggi
- absorpsi (menyerap), pada jamur, hewan tingkat rendah

3. BERGERAK
Perbedaan gerak pada hewan dan tumbuhan adalah :
- Gerak pada hewan bersifat aktif, maksudnya memiliki inisiatif bergerak dan mampu berpindah tempat.
Ex. Harimau berlari menangkap mangsa
Sapi mengibaskan ekornya untuk mengusir lalat
- Gerak pada tumbuhan bersifat pasif, maksudnya tidak memiliki inisiatif bergerak dan tidak mampu berpindah tempat.
Ex. Bunga yang mekar ketika suhu hangat
Ujung akar yang tumbuh mencari sumber air

Untuk melihat cara tumbuhan bergerak, kunjungi :
- http://plantsinmotion.bio.indiana.edu/plantmotion/movements/tropism/tropisms.html
- http://plantsinmotion.bio.indiana.edu/plantmotion/flowers/flower.html

4. TUMBUH dan BERKEMBANG
Dalam pertumbuhan terjadi pertambahan ukuran dan jumlah sel
Ex. berat 20 kg menjadi 35 kg, tinggi badan 100 cm menjadi 150 cm
Dalam perkembangan terjadi pertambahan fungsi organ tubuh
Ex. tidak memiliki bunga, sekarang memiliki bunga

5. REPRODUKSI
merupakan kemampuan makhluk hidup untuk menghasilkan keturunan
Tujuan reproduksi adalah untuk mempertahankan kelangsungan hidup jenisnya
Makhluk hidup bereproduksi secara :
a. Seksual / Kawin / Generatif
reproduksi yang melibatkan individu jantan dan individu betina
Ex. ayam jantan dan betina, benangsari dan putik
b. Aseksual / Tidak Kawin / Vegetatif
reproduksi yang mampu bereproduksi dari 1 individu saja
Ex. Pohon pisang bertunas, Amoeba membelah diri

6. IRITABILITA
Bagian tubuh yang peka terhadap rangsang disebut alat indera, yaitu :
- mata peka terhadap rangsang cahaya
- hidung peka terhadap rangsang bau
- telinga peka terhadap rangsang gelombang bunyi
- lidah peka terhadap rangsang rasa
- kulit peka terhadap rangsang sentuhan

7. EKSKRESI
adalah proses pengeluaran zat sisa metabolisme, agar tidak meracuni tubuh
Organ ekskresi pada manusia :
- Paru-paru --> CO2 dan uap air
- Ginjal --> Urine
- Kulit --> Keringat
- Hati --> Empedu
Alat ekskresi pada tumbuhan :
- stomata, terletak di daun
- lentisel, terletak di batang

8. ADAPTASI
adalah kemampuan makhluk hidup dalam menyesuaikan diri terhadap lingkungannya
Contoh :
- bentuk kaki burung petengger yang berbeda dengan bentuk kaki burung pencakar
- timbunan lemak pada hewan kutub
- Lumba-lumba muncul ke permukaan air untuk mengambil Oksigen

Sumber :
Saktiyono. 2007. Biologi 1. Erlangga
Sumarwan. 2004. Biologi 1. Erlangga
2007. Biologi 1. Yudhistira

Sumber yang lain dapat diperoleh dari :
http://organisasi.org/perbedaan_karakteristik_antara_hewan_dan_tumbuhan_ciri_ciri_klasifikasi_makhluk_hidup_belajar_ilmu_teori_sains_biologi
http://id.wikipedia.org/wiki/Organisme
http://www.organisasi.org/perbedaan_karakteristik_antara_hewan_dan_tumbuhan_ciri_ciri_klasifikasi_makhluk_hidup_belajar_ilmu_teori_sains_biologi
Diposkan oleh The Wonderfull of God's Creation di 20:36 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif
Selasa, 2007 September 11
Beberapa anjuran bekerja di Laboratorium :
1. Patuhilah tata tertib yang ada di laboratorium
2. Sebelum melakukan percobaan, ikutilah petunjuk guru secara seksama
3. Bekerjalah dengan prosedur yang benar, hati-hati, dan teliti
4. Perhatikan label atau keterangan tanda bahaya yang tertera pada alat atau bahan kimia yang akan kamu pergunakan dalam percobaan
5. Jauhkan buku dan kerta-kertasmu dari alat pemanas, zat kimia, dan peralatan kaca
6. Cucilah tanganmu setiap kali setelah memegang zat kimia atau bahan percobaan yang mengandung racun atau mikroorganisme yang bersifat patogen
7. Ikatlah rambut panjangmu agar tidak menggangu aktivitasmu di laboratorium
8. Jika tangan atau tubuhmu terkena zat kimia, maka segeralah disiram dengan air sebanyak-banyaknya
9. Jika kamu akan mencampur zat kimia, maka perhatikan prosedur yang diberikan oleh guru
10. Perhatikan simbol-simbol keselamatan kerja di laboratorium

Beberapa larangan di laboratorium :
1. Memasuki laboratorium tanpa seizin guru
2. Berlari, mendorong, atau bertingkah laku ceroboh dalam laboratorium
3. Makan atau minum dalam laboratorium
4. Mencium atau mencicipi zat-zat, kecuali dengan petunjuk guru
5. Membuang kertas, korek api, atau benda padat lainnya ke dalam saluran pembuangan air
6. Menuang zat kimia ke dalam saluran pembuangan air
7. Meninggalkan laboratorium dalam keadaan kotor

Simbol-simbol Keselamatan Kerja dan Gambar Alat-Alat Laboratorium serta Bahan Laboratorium dapat di baca di buku :
- Kadaryanto. 2006. Biologi 1 Mengungkap Rahasia Alam Kehidupan. Yudhistira.
- Saktiyono. 2007. IPA Biologi 1. Esis.
- Sumarwan. 2004. Sains Biologi untuk SMP kelas VII. Erlangga.

Untuk mengetahui macam-macam mikroskop, kunjungi :
http://en.wikipedia.org/wiki/microscope

Untuk melihat koleksi beberapa jenis serangga, kunjungi:
http://www.mda.state.mn.us/biocon/insectorders/

Untuk melihat anatomi katak yang dibedah, kunjungi :
http://images.ask.com/pictures?q=Frog+Anatomy&qsrc=6&o=12506&l=dir&ni=
http://images.ask.com/pictures?q=Frog+Dissection&qsrc=6&o=12506&l=dir&ni=
http://images.ask.com/pictures?q=Frog+Parts&qsrc=6&o=12506&l=dir&ni=
Diposkan oleh The Wonderfull of God's Creation di 23:36 0 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif
Rabu, 2007 Agustus 29
Dalam alam semesta kita, dapat dibedakan menjadi 2 komponen, yaitu :
1. Komponen abiotik
merupakan komponen dalam alam semesta yang tidak hidup, misalnya udara, air, cahaya, dll.
2. Komponen biotik
merupakan komponen dalam alam semesta yang hidup, misalnya manusia, hewan, tumbuhan, jamur, bakteri, dll.

Alam semesta dipelajari oleh ilmu SAINS.
Ilmu SAINS terdiri dari 3 cabang ilmu yaitu :
1. Ilmu Fisika, mempelajari segala sesuatu tentang abiotik berupa sifat wujud zat dan peristiwa-peristiwa alam.
2. Ilmu Kimia, mempelajari segala sesuatu tentang zat-zat yang terkandung dalam komponen abiotik dan biotik.
3. Ilmu Biologi, mempelajari segala sesuatu tentang makhluk hidup.

Materi-materi yang dipelajari oleh BIOLOGI :
1. Ciri-ciri makhluk hidup
2. Klasifikasi makhluk hidup
3. Keanekaragaman pada tingkat organisasi kehidupan
4. Keanekaragaman pada tingkat ekologis (lingkungan)
5. Keanekaragaman makhluk hidup dan upaya pelestariannya
6. Kepadatan populasi penduduk
7. Pencemaran dan kerusakan lingkungan

Cara saintis bekerja :
1. bekerja dengan metode ilmiah
2. bekerja dengan sikap ilmiah
3. bekerja dengan komunikasi ilmiah

Langkah-langkah dalam metode ilmiah :
1. MERUMUSKAN MASALAH
Merumuskan permasalahan dalam bentuk pertanyaan
2. OBSERVASI (pengamatan)
Mengobservasi bertujuan untuk mengumpulkan data. Ada 2 macam observasi :
-Observasi Kualitatif, merupakan pengamatan menggunakan alat indera, misal melihat, mendengar, membau, meraba, merasa.
Data observasi kualitatif berupa kalimat deskriptif (penjelasan)
- Observasi Kuantitatif, merupakan pengamatan menggunakan alat ukur, misal menimbang, mengukur, mengukur volume, dll.
3. HIPOTESIS
Menduga sementara jawaban dari Rumusan Masalah berdasarkan hasil Observasi.
4. EKSPERIMEN
Membuktikan hipotesis dengan melakukan percobaan.
5. KESIMPULAN
Menyimpulkan jawaban apakah hipotesis diterima atau ditolak.
6. EKSPERIMEN ULANG
Jika hipotesis ditolak maka harus melakukan eksperimen ulang

Sikap Ilmiah yang harus dimiliki saintis adalah :
1. Ingin tahu
2. Jujur
3. Teliti
4.Terbuka
5. Mau menerima masukan
6. Obyektif

Komukasi Ilmiah diperlukan untuk membuat Laporan hasil Eksperimen. Macam-macam komunikasi ilmiah adalah :
1. Deskripsi
2. Tabel
3. Diagram
4. Bagan
5. Gambar
Diposkan oleh The Wonderfull of God's Creation di 21:04 4 komentar http://www.blogger.com/img/icon18_edit_allbkg.gif
Langgan: Entri (Atom)

RADIOAKTIF

Unsur Radioaktif

Sinar-sinar radioaktif

Ditulis oleh Ratna dkk pada 23-12-2009
sinar2_radioaktif
Pada tahun 1903, Ernest Rutherford mengemukakan bahwa radiasi yang dipancarkan zat radioaktif dapat dibedakan atas dua jenis berdasarkan muatannya. Radiasi yang bermuatan positif dinama sinar alfa, dan yang bermuatan negatif diberi nama sinar beta . Selanjutnya Paul U.Viillard menemukan jenis sinar yang ketiga yang tidak bermuatan dan diberi nama sinar gamma.
Sinar alfa ( α )
sinar_alphaSinar alfa merupakan radiasi partikel yang bermuatan positif
Partikel sinar alfa sama dengan inti helium -4, bermuatan +2e dan bermassa 4 sma. Partikel alfa adalah partikel terberat yang dihasilkan oleh zat radioaktif. Sinar alfa dipancarkan dari inti dengan kecepatan sekitar 1/10 kecepatan cahaya. Karena memiliki massa yang besar daya tembus sinar alfa paling lemah diantara diantara sinar-sinar radioaktif. Diudara hanya dapat menembus beberapa cm saja dan tidak dapat menembus kulit. Sinar alfa dapat dihentikan oleh selembar kertas biasa. Sinar alfa segera kehilangan energinya ketika bertabrakan dengan molekul media yang dilaluinya. Tabrakan itu mengakibatkan media yang dilaluinya mengalami ionisasi. Akhirnya partikel alfa akan menangkap 2 elektron dan berubah menjadi atom h
Sinar beta (β)
sinar_betaSinar beta merupakan radiasi partikel bermuatan negatif. Sinar beta merupakan berkas elektron yang berasal dari inti atom. Partikel beta yang bemuatan -1e dan bermassa 1/836 sma. Karena sangat kecil, partikel beta dianggap tidak bermassa sehingga dinyatakan dengan notasi eo1. Energi sinar beta sangat bervariasi, mempunyai daya tembus lebih besar dari sinar alfa tetapi daya pengionnya lebih lemah. Sinar beta paling energetik dapat menempuh sampai 300 cm dalam udara kering dan dapat menembus kulit.
Sinar gamma ( γ )
sinar_gammaSinar gamma adalah radiasi elektromagnetek berenergi tinggi, tidak bermuatan dan tidak bermassa. Sinar  γ dinyatakan dengan notasi gamma. Sinar gamma mempunyai daya tembus. Selain sinar alfa, beta, gamma, zat radioaktif buatan juga ada yang memancarkan sinar X dan sinar Positron. Sinar X adalah radiasi sinar elektromagnetik.

Perlu diingat bahwa tidak semua unsur bersifat radioaktif. Mengapa? Pokok bahasan unsur radioaktif ini sangat menarik.  Dalam pelajaran fisika juga dibahas secara fisika tentang radioaktivitas. Sangat banyak sekali informasi yang bisa kita peroleh ketika kita menjelajah di internet. Materi pelajaran ini bisa saja diambil dari beberapa materi perkuliahan tingkat pertama di perguruan tinggi. Intinya bahasan terkait unsur radioaktif bisa dijadikan bahan pengayaan pengetahuan kimia di SMA.
Berbagai tautan tentang pokok bahasan ini diklasifikasikan menjadi 3 bagian penting yang meliputi pengertian unsur radioaktif, kegunaan unsur radioaktif, bahayanya unsur radioaktif. Beberapa bentuk file tersedia, mulai dari tayangan presentasi, pdf, simulasi, animasi, dan video.

Peluruhan radioaktif

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
http://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Radioactive.svg/150px-Radioactive.svg.png
http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png
Simbol trefoil digunakan untuk menunjukkan sebuah material radioaktif.
Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom.
Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels.

Pendahuluan

Neutron dan proton yang menyusun inti atom, terlihat seperti halnya partikel-partikel lain, diatur oleh beberapa interaksi. Gaya nuklir kuat, yang tidak teramati pada skala makroskopik, merupakan gaya terkuat pada skala subatomik. Hukum Coulomb atau gaya elektrostatik juga mempunyai peranan yang berarti pada ukuran ini. Gaya nuklir lemah sedikit berpengaruh pada interaksi ini. Gaya gravitasi tidak berpengaruh pada proses nuklir.
Interaksi gaya-gaya ini pada inti atom terjadi dengan kompleksitas yang tinggi. Ada sifat yang dimiliki susunan partikel didalam inti atom, jika mereka sedikit saja bergeser dari posisinya, mereka dapat jatuh ke susunan energi yang lebih rendah. Mungkin bisa sedikit digambarkan dengan menara pasir yang kita buat di pantai: ketika gesekan yang terjadi antar pasir mampu menopang ketinggian menara, sebuah gangguan yang berasal dari luar dapat melepaskan gaya gravitasi dan membuat tower itu runtuh.
Keruntuhan menara (peluruhan) membutuhkan energi aktivasi tertentu. Pada kasus menara pasir, energi ini datang dari luar sistem, bisa dalam bentuk ditendang atau digeser tangan. Pada kasus peluruhan inti atom, energi aktivasi sudah tersedia dari dalam. Partikel mekanika kuantum tidak pernah dalam keadaan diam, mereka terus bergerak secara acak. Gerakan teratur pada partikel ini dapat membuat inti seketika tidak stabil. Hasil perubahan akan mempengaruhi susunan inti atom; sehingga hal ini termasuk dalam reaksi nuklir, berlawanan dengan reaksi kimia yang hanya melibatkan perubahan susunan elektron diluar inti atom.
(Beberapa reaksi nuklir melibatkan sumber energi yang berasal dari luar, dalam bentuk "tumbukkan" dengan partikel luar misalnya. Akan tetapi, reaksi semacam ini tidak dipertimbangkan sebagai peluruhan. Reaksi seperti ini biasanya akan dimasukan dalam fisi nuklir/fusi nuklir.

[sunting] Penemuan

Radioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.
Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.
http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Alfa_beta_gamma_radiation.svg/280px-Alfa_beta_gamma_radiation.svg.png
http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png
Partikel Alfa tidak mampu menembus selembar kertas, partikel beta tidak mampu menembus pelat alumunium. Untuk menghentikan gamma diperlukan lapisan metal tebal, namun karena penyerapannya fungsi eksponensial akan ada sedikit bagian yang mungkin menembus pelat metal
Pada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.
Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.
Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.
Bahaya radioaktivitas dari radiasi tidak serta merta diketahui. Efek akut dari radiasi pertama kali diamati oleh insinyur listrik Amerika Elihu Thomson yang secara terus menerus mengarahkan sinar-X ke jari-jarinya pada 1896. Dia menerbitkan hasil pengamatannya terkait dengan efek bakar yang dihasilkan. Bisa dikatakan ia menemukan bidang ilmu fisika medik (health physics); untungnya luka tersebut sembuh dikemudian hari.
Efek genetis radiasi baru diketahui jauh dikemudian hari. Pada tahun 1927 Hermann Joseph Muller menerbitkan penelitiannya yang menunjukkan efek genetis radiasi. Pada tahun 1947 dimendapat penghargaan hadiah Nobel untuk penemuannya ini.
Sebelum efek biologi radiasi diketahui, banyak perusahan kesehatan yang memasarkan obat paten yang mengandung bahan radioaktif; salah satunya adalah penggunaan radium pada perawatan enema. Marie Curie menentang jenis perawatan ini, ia memperingatkan efek radiasai pada tubuh manusia belum benar-benar diketahui (Curie dikemudian hari meninggal akibat Anemia Aplastik, yang hampir dipastikan akibat lamanya ia terpapar Radium). Pada tahun 1930-an produk pengobatan yang mengandung bahan radioaktif tidak ada lagi dipasaran bebas.

Mode Peluruhan
Sebuah inti radioaktif dapat melakukan sejumlah reaksi peluruhan yang berbeda. Reaksi-reaksi tersebut disarikan dalam tabel berikut ini. Sebuah inti atom dengan muatan (nomor atom) Z dan berat atom A ditampilkan dengan (A, Z).
Mode peluruhan
Partikel yang terlibat
Inti anak
Peluruhan dengan emisi nukleon:
Sebuah partikel alfa (A=4, Z=2) dipancarkan dari inti
(A-4, Z-2)
Sebuah proton dilepaskan dari inti
(A-1, Z-1)
Sebuah neutron dilepaskan dari inti
(A-1, Z)
Sebuah inti terpecah menjadi dua atau lebih atom dengan inti yang lebih kecil disertai dengan pemancaran partikel lainnya
-
Inti atom memancarkan inti lain yang lebih kecil tertentu (A1, Z1) yang lebih besar daripada partikel alfa
(A-A1, Z-Z1) + (A1,Z1)
Berbagai peluruhan beta:
Sebuah inti memancarkan
elektron dan sebuah antineutrino || (A, Z+1)
Sebuah inti memancarkan positron dan sebuah neutrino
(A, Z-1)
Sebuah inti menangkap elektron yang mengorbit dan memancarkan sebuah neutrino
(A, Z-1)
Sebuah inti memancarkan dua elektron dan dua antineutrinos
(A, Z+2)
Sebuah inti menyerap dua elektron yang mengorbit dan memancarkan dua neutrino
(A, Z-2)
Sebuah inti menangkap satu elektron yang mengorbit memancarkan satu positron dan dua neutrino
(A, Z-2)
Sebuah inti memancarkan dua positrons dan dua neutrino
(A, Z-2)
Transisi antar dua keadaan pada inti yang sama:
Sebuah inti yang tereksitasi melepaskan sebuah foton energi tinggi (sinar gamma)
(A, Z)
Inti yang tereksitasi mengirim energinya pada sebuah elektron orbital dan melepaskannya
(A, Z)
Peluruhan radioaktif berakibat pada pengurangan massa, dimana menurut hukum relativitas khusus massa yang hilang diubah menjadi energi (pelepasan energi) sesuai dengan persamaan E = mc2. Energi ini dilepaskan dalam bentuk energi kinetik dari partikel yang dipancarkan.

Rantai peluruhan dan mode peluruhan ganda

Banyak inti radioaktif yang mempunyai mode peluruhan berbeda. Sebagai contoh adalah Bismuth-212, yang mempunyai tiga.
Inti anak yang dihasilkan dari proses peluruhan biasanya juga tidak stabil, kadang lebih tidak stabil dari induknya. Bila kasus ini terjadi, inti anak tadi akan meluruh lagi. Proses kejadian peluruhan berurutan yang menghasilkan hasil akhir inti stabil, disebut rantai peluruhan.

Keberadaan dan penerapan

Menurut teori Big Bang, isotop radioaktif dari unsur teringan (H, He, dan Li) dihasilkan tidak berapa lama seteleah alam semesta terbentuk. Tetapi, inti-inti ini sangat tidak stabil sehingga tidak ada dari ketiganya yang masih ada saat ini. Karenanya sebagian besar inti radioaktif yang ada saat ini relatif berumur muda, yang terbentuk di bintang (khususnya supernova) dan selama interaksi antara isotop stabil dan partikel berenergi. Sebagai contoh, karbon-14, inti radioaktif yang mempunyai umur-paruh hanya 5730 tahun, secara terus menerus terbentuk di atmosfer atas bumi akibat interaksi antara sinar kosmik dan Nitrogen.
Peluruhan radioaktif telah digunakan dalam teknik perunut radioaktif, yang digunakan untuk mengikuti perjalanan subtansi kimia di dalam sebuah sistem yang kompleks (seperti organisme hidup misalnya). Sebuah sampel dibuat dengan atom tidak stsbil konsentrasi tinggi. Keberadaan substansi di satu atau lebih bagian sistem diketahui dengan mendeteksi lokasi terjadinya peluruhan.
Dengan dasar bahwa proses peluruhan radioaktif adalah proses acak (bukan proses chaos), proses peluruhan telah digunakan dalam perangkat keras pembangkit bilangan-acak yang merupakan perangkat dalam meperkirakan umur absolutmaterial geologis dan bahan organik.

Laju peluruhan radioaktif

Laju peluruhan, atau aktivitas, dari material radioaktif ditentukan oleh:
Konstanta:
·         Waktu paruh - simbol t1 / 2 - waktu yang diperlukan sebuah material radioaktif untuk meluruh menjadi setengah bagian dari sebelumnya.
·         Rerata waktu hidup - simbol τ - rerata waktu hidup (umur hidup) sebuah material radioaktif.
·         Konstanta peluruhan - simbol λ - konstanta peluruhan berbanding terbalik dengan waktu hidup (umur hidup).
(Perlu dicatat meskipun konstanta, mereka terkait dengan perilaku yang secara statistik acak, dan prediksi menggunakan kontanta ini menjadi berkurang keakuratannya untuk material dalam jumlah kecil. Tetapi, peluruhan radioaktif yang digunakan dalam teknik penanggalan sangat handal. Teknik ini merupakan salah satu pertaruhan yang aman dalam ilmu pengetahuan sebagaimana yang disampaikan oleh [1])
Variabel:
·         Aktivitas total - simbol A - jumlah peluruhan tiap detik.
·         Aktivitas khusus - simbol SA - jumlah peluruhan tiap detik per jumlah substansi. "Jumlah substansi" dapat berupa satuan massa atau volume.)
Persamaan:
 t_{1/2} = \frac{ln(2)}{\lambda} = \tau ln(2)
 A =  \frac{dN}{dt} = - \lambda N
 S_A a_0 = \frac{dN}{dt}\bigg|_{t=0} = - \lambda N_0
dimana
 a_0 \ adalah jumlah awal material aktif.

Pengukuran aktivitas

Satuan aktivitas adalah: becquerel (simbol Bq) = jumah disintegrasi (pelepasan)per detik ; curie (Ci) =  3.7 \times 10^{10} \ disintegrasi per detik; dan disintegrasi per menit (dpm).

Waktu peluruhan

Sebagaimana yang disampaikan di atas, peluruhan dari inti tidak stabil merupakan proses acak dan tidak mungkin untuk memperkirakan kapan sebuah atom tertentu akan meluruh, melainkan ia dapat meluruh sewaktu waktu. Karenanya, untuk sebuah sampel radioisotop tertentu, jumlah kejadian peluruhan –dN yang akan terjadi pada selang (interval) waktu dt adalah sebanding dengan jumlah atom yang ada sekarang. Jika N adalah jumlah atom, maka kemungkinan (probabilitas) peluruhan (– dN/N) sebanding dengan dt:
 \left(-\frac{dN}{N} \right) = \lambda \cdot dt
Masing-masing inti radioaktif meluruh dengan laju yang berbeda, masing-masing mempunyai konstanta peluruhan sendiri (λ). Tanda negatif pada persamaan menunjukkan bahwa jumlah N berkurang seiring dengan peluruhan. Penyelesaian dari persamaan diferensial orde 1 ini adalah fungsi berikut:
N(t) = N_0 e^{-\lambda t} \,\!
Fungsi di atas menggambarkan peluruhan exponensial, yang merupakan penyelesaian pendekatan atas dasar dua alasan. Pertama, fungsi exponensial merupakan fungsi berlanjut, tetapi kuantitas fisik N hanya dapat bernilai bilangan bulat positif. Alasan kedua, karena persamaan ini penggambaran dari sebuah proses acak, hanya benar secara statistik. Akan tetapi juga, dalam banyak kasus, nilai N sangat besar sehingga fungsi ini merupakan pendekatan yang baik.
Selain konstanta peluruhan, peluruhan radioaktif sebuah material biasanya juga dicirikan oleh rerata waktu hidup. Masing-masing atom "hidup" untuk batas waktu tertentu sebelum ia meluruh, dan rerata waktu hidup adalah rerata aritmatika dari keseluruhan waktu hidup atom-atom material tersebut. Rerata waktu hidup disimbolkan dengan τ, dan mempunyai hubungan dengan konstanta peluruhan sebagai berikut:
\tau = \frac{1}{\lambda}
Parameter yang lebih biasa digunakan adalah waktu paruh. Waktu paruh adalah waktu yang diperlukan sebuah inti radioatif untuk meluruh menjadi separuh bagian dari sebelumnya. Hubungan waktu paruh dengan konstanta peluruhan adalah sebagai berikut:
t_{1/2} = \frac{\ln 2}{\lambda}
Hubungan waktu paruh dengan konstanta peluruhan menunjukkan bahwa material dengan tingkat radioaktif yang tinggi akan cepat habis, sedang materi dengan dengan tingkat radiasi rendah akan lama habisnya. Waktu paruh inti radioaktif sangat bervariasi, dari mulai 1024 tahun untuk inti hampir stabil, sampai 10-6 detik untuk yang sangat tidak stabil.
Feb 6, '08 7:07 AM
for everyone
Radioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.

Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.

Partikel Alfa tidak mampu menembus selembar kertas, partikel beta tidak mampu menembus pelat alumunium. Untuk menghentikan gamma diperlukan lapisan metal tebal, namun karena penyerapannya fungsi eksponensial akan ada sedikit bagian yang mungkin menembus pelat metal. Pada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.


Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari

besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.

Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.

Dewasa ini di beberapa negara maju pemanfaatan tenaga nuklir di berbagai bidang kehidupan masyarakat, seperti di bidang penelitian, pertanian, kesehatan, industri, dan energi sudah begitu pesat, maka sudah sewajarnya potensi tenaga nuklir yang cukup besar tersebut dikembangkan dan dimanfaatkan bagi sebesar-besar kemakmuran rakyat. Namun, di samping manfaatnya yang begitu besar tenaga nuklir juga mempunyai potensi bahaya radiasi terhadap pekerja, anggota masyarakat, dan lingkungan hidup apabila dalam pemanfaatan tenaga nuklir, ketentuan-ketentuan tentang keselamatan nuklir tidak diperhatikan dan tidak diawasi dengan sebaik-baiknya.
Pembinaan dan pengembangan kemampuan sumber daya manusia adalah syarat mutlak dalam rangka mendukung upaya pemanfaatan tenaga nuklir dan pengawasannya sehingga pemanfaatan tenaga nuklir benar-benar meningkatkan kesejahteraan rakyat dengan tingkat keselamatan yang tinggi. Pembinaan dan pengembangan ini dilakukan juga untuk meningkatkan disiplin dalam mengoperasikan instalasi nuklir dan menumbuhkembangkan budaya keselamatan. Zat radio aktif adalah setiap zat yang memancarkan radiasi pengion dengan aktivitas jenis lebih besar daripada 70 kBq/kg atau 2 nCi/g (tujuh puluh kilobecquerel per kilogram atau dua nanocurie per gram). Angka 70 kBq/kg (2 nCi/g) tersebut merupakan patokan dasar untuk suatu zat dapat disebut zat radioaktif pada umum-nya yang ditetapkan berdasarkan ketentuan dari Badan Tenaga Atom Internasional (International Atomic Energy Agency). Namun, masih terdapat beberapa zat yang walaupun mempunyai aktivitas jenis lebih rendah daripada batas itu dapat dianggap sebagai zat radioaktif karena tidak mungkin ditentukan batas yang sama bagi semua zat mengingat sifat masing-masing zat tersebut berbeda.
Pengertian atau arti definisi pencemaran zat radioaktif adalah suatu pencemaran lingkungan yang disebabkan oleh debu radioaktif akibat terjadinya ledakan reaktor-reaktor atom serta bom atom. Limbah radioaktif adalah zat radioaktif dan bahan serta peralatan yang telah terkena zat radioaktif atau menjadi radioaktif karena pengoperasian instalasi nuklir yang tidak dapat digunakan lagi.  yang paling berbahaya dari pencemaran radioaktif seperti nuklir adalah radiasi sinar alpha, beta dan gamma yang sangat membahayakan makhluk hidup di sekitarnya. Selain itu partikel-partikel neutron yang dihasilkan juga berbahaya. Zat radioaktif pencemar lingkungan yang biasa ditemukan adalah 90SR penyebab kanker tulang dan 131J.
Apabila ada makhluk hidup yang terkena radiasi atom nuklir yang berbahaya biasanya akan terjadi mutasi gen karena terjadi perubahan struktur zat serta pola reaksi kimia yang merusak sel-sel tubuh makhluk hidup baik tumbuh-tumbuhan maupun hewan atau binatang.
Efek serta Akibat yang ditimbulkan oleh radiasi zat radioaktif pada umat manusia seperti berikut di bawah ini : Pusing-pusing, Nafsu makan berkurang atau hilang, Terjadi diare, Badan panas atau demam, Berat badan turun, Kanker darah atau leukimia, Meningkatnya denyut jantung atau nadi

Penggunaan Radioisotop
Dewasa ini, penggunaan radioisotop untuk maksud-maksud damai (untuk kesejahteraan umat manusia) berkembang dengan pesat. Pusat listrik tenaga nuklir (PLTN) adalah salah satu contoh yang sangat populer. PLTN ini memanfaatkan efek panas yang dihasilkan reaksi inti suatu radioisotop , misalnya U-235. Selain untuk PLTN, radioisotop juga telah digunakan dalam berbagai bidang misalnya industri, teknik, pertanian, kedokteran, ilmu pengetahuan, hidrologi, dan lain-lain.
Pada bab ini kita akan membahas dua penggunaan radioisotop, yaitu sebagai perunut (tracer) dan sumber radiasi. Pengunaan radioisotop sebagai perunut didasarkan pada ikatan bahwa isotop radioaktif mempunyai sifat  kimia yang sama dengan isotop stabil. Jadi suatu isotop radioaktif melangsungkan reaksi kimia, yang sama seperti isotop stabilnya. Sedangkan penggunaan radioisotop sebagai sumber radiasi didasarkan pada kenyataan bahwa radiasi yang dihasilkan zat radioaktif dapat mempengaruhi materi maupun mahluk.
Radiasi dapat digunakan untuk memberi efek fisis: efek kimia, maupun efek biologi. Oleh karena itu, sebelum membahas pengunaan radioisotop kita akan mengupas terlebih dahulu tentang satuan radiasi dan pengaruh radiasi terhadap materi dan mahluk hidup.
Satuan radiasi
Berbagai macam satuan digunakan untuk menyatakan intensitas atau jumlah radiasi bergantung pada jenis yang diukur.
Curie(Ci) dan Becquerrel (Bq)
Curie dan Bequerrel adalah satuan yang dinyatakan untuk menyatakan keaktifan yakni jumlah disintegrasi (peluruhan) dalam satuan waktu. Dalam sistem satuan SI, keaktifan dinyatakan dalam Bq. Satu Bq sama dengan satu disintegrasi per sekon.
1Bq = 1 dps
dps = disintegrasi per sekon
Satuan lain yang juga biasa digunakan ialah Curie. Satu Ci ialah keaktifan yang setara dari 1 gram garam radium, yaitu 3,7.1010 dps. 1Ci = 3,7.1010 dps = 3,7.1010 Bq
Gray (gy) dan Rad (Rd)
Gray dan Rad adalah satuan yang digunakan untuk menyatakan keaktifan yakni jumlah (dosis) radiasi yang diserap oleh suatu materi. Rad adalah singkatan dari 11 radiation absorbed dose. Dalam sistem satuan SI, dosis dinyatakan dengan Gray (Gy). Satu Gray adalah absorbsi 1 joule per kilogram materi. 1 Gy = 1 J/kg Satu rad adalah absorbsi 10-3 joule energi/gram jaringan.
1 Rd = 10-3 J/g.
Hubungan gray dengan fad 1 Gy = 100 rd
Rem
Daya perusak dari sinar-sinar radioaktif tidak saja bergantung pada dosis tetapi juga pada jenis radiasi itu sendiri. Neutron, sebagai contoh, lebih berbahaya daripada sinar beta dengan dosis dan intensitas yang sama. Rem adalah satuan dosis setelah memperhitungkan pengaruh radiasi pada mahluk hidup (rem adalah singkatan dari radiation equivalen for man).